Application of machine learning
methods for embodied carbon
estimation

Aaron Qiyu Liu | Chalmers University of Technology | 19/09/2023



Background

* Embodied carbon from
the construction of
buildings and transport
infrastructures
corresponds to 13% of
global CO2 emissions

* Embodied carbon
corresponds to lifecycle

stages A1-5
« Detailed bottom-up Embodied Carbon Operational Carbon
Manufacture, transport and Building energy consumption
mOde|S are needed tO installation of construction materials

support policy making

Source: Skanska USA 2023-10-31



Step 1: Quantify material stock
Stock = Inventory * Material intensity

Step 2: Material flow analysis
MFA(Stock): Inflows, Outflows

Step 3: Estimate embodied carbon
EC = Inflows * Emission factor
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What is the challenge? EiRpon

EXIT»

» The quantification of stock requires data on each building/road in the analyzed area

- Statistical data are often incomplete

» To conduct national level analysis, methods to impute or predict missing data is required
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Missing data - roads

60.1%

from the analysis

* Includes all asphalt paved roads and 6 - Includes width data
gravel roads, cycleways are excluded B Missing width data
g 5 - 75%
« Data from NVDB =)
. L] L] H n
« Width data is important for material pt 4
stock estimation =
c 31
« Private and municipally owned roads £
have large proportion of missing data § 2 -
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Missing data — residential buildings EARoon

Missing data by building type
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How to deal with missing data? CARson

1. Drop all missing data:
* Makes the analysis incomplete

2. Imputing with mean, median, or nearest neighbors:
» Could be worse than just random guess
 Data is very heterogenous

3. Randomly sample from distribution:
 Basically, random guesses, can be seen as baseline

4. Machine learning!:
* Good at tasks like this, but it is a ‘black box’
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What is machine learning?

X ﬁ Machine learning ﬁ y
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How does (supervised) ML work?

T

No missing Train data Test data
values (80%) (20%)
l Train
- T
With

Predict
missing ML model — Validate

values
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How is ML applied? ERson

Roads
 Predicting missing road widths with regression models

Residential buildings
* Predicting missing building age with classification models

* Predicting missing building floor space with regression models and predicted age as a feature
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Road results

Machine learning resulits

Target Type of model

Road width Regression

0.78

Residential building results

Target Type of model

Evaluation metrics

Building age Classification

Building floor space Regression

Accuracy: 89%
R%:0.74
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Road stock results
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Private roads have the
longest absolute length

But it mostly consists of
gravel roads

State-owned roads
contains the most in-
use material stock
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Embodied emission results

Business as usual

N —

Despite the lower
absolute mass, steel
still contribute to a
significant share of
embodied carbon due
to its shorter lifetime
and higher emission
factor

Municipalities and
private road owners still
have a role to play

Emission reduction
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Emissions from new construction

* New construction of
roads contributes a
very low percentage of
the overall yearly
embodied carbon

 To decarbonize
Swedish roads, supply
side technological
innovations are crucial
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Business as usual

Emission reduction
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Summary ChrgoN

» Machine learning methods perform relatively well for predicting missing data
» The result is a hybrid of real and synthetic data
* Needs to be tested on a case-by-case basis

« Steel contributes a significant percentage of embodied carbon
* Mainly because the emission factor for steel is magnitudes higher than asphalt

* Reducing or stopping new construction of roads will have limited effect
» Decarbonizing the material supply is more important

» More attention could be directed at improving maintenance routines to prolong lifetime
 Results might change if bridges and tunnels are included due to the use of concrete
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Future work CRRBoN

« Quantitatively forecasting future new housing construction through ML-based methods
« Scenario-based embodied carbon analysis of residential buildings

» Non-residential buildings embodied carbon

18 2023-10-31
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